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The metallic materials creep behaviour has been described and a complete model is

presented. The basic constitutive equation, as well as the structure parameters, have been

derived from a mathematical analysis that represents the dominant physical procedures and

mechanisms. The model is very general because it is referred to all stages of creep and

describes the creep behaviour of all metallic materials, including those strengthened by

a dispersion of second-phase particles. A creep function has been derived from the

constitutive equation describing all three stages of creep under constant loading. The

function has the minimum possible number of fitting, parameters. The dependence of the

fitting parameters on the loading conditions has been described using very simple

mathematical relations. Applications and predictions have been carried out in a wide range

of metallic materials. Good agreement has been shown by a comparison made also between

the creep curves determined experimentally, and those obtained from creep function and

determined fitting parameters.
1. Introduction
The complication of metallic materials mechanical
behaviour under creep conditions has had, as a conse-
quence, the absence, until now, of a model leading to
generally accepted constitutive equations. Partial at-
tempts have been made, converging to a common goal
which still remains unaccomplished. On the other
hand, the need remains for valid constitutive equa-
tions to satisfy the design requirements.

The principle that the equations are more valid
when they are based on actual physical procedures is
generally accepted today. This principle constitutes
a very strong motive for utilizing knowledge of the
nature of creep deformation in the structural composi-
tion of models leading to constitutive equations. This
is the modern trend for the mathematical modelling
which is replacing the older trend for the development
of constitutive equations which was exclusively based
on experiment. Knowledge of the role of the internal
structure (for example, dislocation density, cavity den-
sity) for the response of the non-elastic deformation is
critical. This leads to the use of state variables (struc-
ture parameters) for the prediction of the transient and
steady-state response.

In general, there are three types of model producing
constitutive equations: physical (microscopic), pheno-
menological (macroscopic, empirical) and physical—
phenomenological (micro-macroscopic). The basic

elements for the formulation of the physical models
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are relations concerning the particular elementary
physical procedures while the variables in these rela-
tions are real physical quantities, for example, atomic
volume, etc. Of course these physical quantities are
assembled to construct more complicated structures
but the distinctive difference is that there always exists
a separate representation of the actual physical quant-
ities. It is obvious that the physical models cannot lead
to general constitutive equations. Moreover, even if
the physical models did lead to general constitutive
equations, the very large number of parameters, many
of which would not have a value, would render them
useless for applications. To start with, it is accepted
that, in the physical—phenomenological models, the
physical procedures defining the behaviour to be
modelled are too complicated to be represented in
terms of actual physical quantities. However, on the
other hand, it is acknowledged that there is sufficient
scientific knowledge of the physical mechanisms in
order to understand adequately the main mechanism
controlling the behaviour. Therefore, after an analysis,
state variables (structure parameters) corresponding
to the dominant physical procedures can be produced
and equations of state variables can be formulated, so
that the behaviour of the state variables simulates the
behaviour of the physical variables under the same
conditions. Therefore, there is a one to one corres-
pondence between the transient response of the con-

stitutive variables in the physical—phenomenological
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model and the actual behaviour of the physical quant-
ities in the real material. This is the distinctive differ-
ence between a physical—phenomenological model
and a simple fitting to macroscopic data, or to an
expanded form of them.

Certainly, a complete model requires not only a cor-
rect selection of state variables and accurate formulae
(with proper mathematical processing) for the equa-
tions that associate the variables, but also special
algebraic expressions for the dependencies of the vari-
ous fitting parameters on the straining quantities. This
state of development includes the procedure of fitting
to experimental data for the derivation of the best
expression. It should be emphasized that one of the
main criteria for the evaluation of the various models
is the number of fitting parameters which should re-
main as small as possible, without, though, deviating
from the above-mentioned principles.

In earlier work [1—6], basic conclusions were for-
mulated that led to effective partial applications for
the metallic materials creep under various straining
conditions. In the present paper, a general physical—
phenomenological model for the creep of metallic
materials, including those strengthened with second-
phases particles, is formulated and fully justified. The
analytical mathematical presentation of the model is
performed and an effective creep function with the
minimum possible number of fitting parameters is
presented. That is, the all theoretical analysis results in
a useful tool for mechanical design.

2. Initial and secondary creep
2.1. Fundamental concepts and main

mechanisms
The common ground of all dislocation creep theories
is the knowledge that the material is hardened with
the deformation and is softened with time (while
heated). These two procedures take place simulta-
neously and define the strain. This idea was first for-
mulated by Bailey and Orowan [7] and was success-
ively developed by a large number of scientists. At
a high temperature, usually about the one-third of the
absolute melting temperature, the dislocations acquire
a new degree of freedom. Except for gliding, there is
also climbing, and therefore the dislocations are not
obliged to move only on their slip planes. This results
in the gradual release of dislocations previously cre-
ated with the strain. The structure of the dislocations
is subjected to the so-called recovery. This means that
if a dislocation is held by an obstacle, the recovery
procedure will release it, allow it to slide down to the
next obstacle, the glide step of the dislocation being
responsible for almost the total strain. The mecha-
nisms which are based on this succession of glide—
climb of dislocations are referred to as hardening-
recovery mechanisms. The characteristic difference
which distinguishes these mechanisms from those of
plastic flow under lower temperatures (which mecha-
nisms may also be thermally activated) is that the
procedure, at an atomic level, is rather the diffusive
movement of the atomic voids towards or from the

dislocation, which glides more, than the gliding of the
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dislocation as a whole [8]. The modern unified way of
describing the gliding phenomena and of dislocation
hardening and recovery, is the theory of a dislocations
network and of an internal back stress [9—19].

In accordance with the experimental observations,
it has been assumed that the dislocations are arranged
to form a network. The creep procedure consists of
continuous events of recovery and hardening. The
coherence of the network is ensured by the repulsive
and attractive forces among the dislocations. As a re-
sult of the applied stress and of the thermal fluctu-
ation, some of the dislocations will escape from the
network and will slide a certain distance down to the
point where they encounter some obstacle (disloca-
tion, second-phase particle, etc.). During their move-
ment the strain and hardening increase because the
dislocations subjected to stress, increase their length
and, therefore, their density. The recovery procedure
takes place simultaneously. The force for the creep of
the dislocations results from the linear stress of the
dislocations which have been bent by the obstacles.
After the climbing, the procedure is repeated.

At the beginning of the loading (initial creep), many
of the dislocations loosely connected to the network
will move, and therefore the creep rate will, initially, be
very high. But the number of easily escaping disloca-
tions decreases, gradually, with time. This results in
the fact that the creep strain increases with a diminish-
ing rate. At this stage, the hardening is dominant and
the dislocation density increases. However, the recov-
ery trend increases with the increase in the dislocation
density, therefore, the recovery rate increases and
finally, a situation results where the two procedures
balance one another while the dislocation density and
the creep rate remain constant (secondary creep). The
time required for a dislocation to overcome an ob-
stacle has to do with the flow of atomic voids at jogs of
its length. What is characteristic is that the higher the
stress and the temperature, the faster is the climb. The
time required for a dislocation to slide depends on the
relationship between the applied stress and the stress
coming from the dislocations network (elastic disloca-
tion field). Dissolved atoms (foreign atoms) which are
attracted to the elastic dislocation field and which
attempt to be diffused while the dislocation slides,
create a friction force with the lattice and can deceler-
ate its movement. In a material that was strengthened
with second-phase particles and the ratio of the par-
ticles volume with respect the total volume is large
enough, the opposing stress consists of a component
that is due to the particles [20].

The model of a dislocation sliding on the sliding
plane is represented by a load sliding on a plane, r

&
is

the friction stress in the lattice during the movement of
the dislocation because of foreign (interstitial) atoms.
r
1

is the internal stress of particles coming from the
elastic field of the distributed second-phase particles.
The stress that is applied on the dislocation and that is
due to the network of the rest dislocations, is called
the internal back stress and is represented by the
symbol r

*
. In general, it can be assumed that r

&
:0

when the atomic size of the interstitial atoms is not

considerably different from that of the lattice atoms,



while r
1

is taken into account only in metallic mater-
ials heavily hardened with particles. In order for strain
to take place, the dislocation has to glide under the
applied external stress which is herein represented by
r. If r)r

*
, glide will not take place for a limited

period of time until the internal back stress is self-
adjusted to new values. The above formulation does
not include existing inelastic phenomena related to the
grain boundary. But as shown in a previous study
[11], these phenomena can be neglected. At the micro-
scopic scale, the hardening is controlled by the rate at
which the dislocations approach each other, while the
recovery takes place through rearrangement (and
counterbalancing) of the dislocations. Therefore, the
applied stress is composed of two terms: the mean
internal back stress, which is related to the recov-
ery—hardening equilibrium, and the mean effective
stress that is responsible for the glide [21, 22]. The
concept of the mean internal back stress (and, respec-
tively, of the mean effective stress) has been proven to
be a very important phenomenological structure para-
meter because it is directly related to the dominant
procedure of dislocations movement.

2.2. Analytical processing and basic relations
Consider¸ as the free dislocation length, that is length
between two obstacles (dislocation link length). ¸ is
the possible elementary glide unit and, at the same
time, the element forming the dislocations network.
The variable ¸ is of stochastic character [23—26]; let
N be the probability density function of distribution
¸. Using ¸ as a weights variable, the mean internal
back stress, r

*
, can be written as

r
*
"

: Ķ r@
*
N¸d¸

: Ķ N¸d¸
(1)

where ª̧ is the range of ¸ and r@
*
the local internal back

stress. The local internal stress can be written as
a function of ¸ [27—29]

r@
*
"

a@ Gb
¸

(2)

where G is the shear modulus, b Burgers’ vector and a@
is a numerical coefficient. If " is the mean dislocation
length, that is "" 1̧ , then Equations 1 and 2 lead to

r
*
"

a@ Gb
"

(3)

The mean dislocation length, ", is related to the
(mean) dislocation density, q. Dislocation density is
defined as the total dislocation length per unit of
volume or, alternatively, the number of dislocations
passing through a unit cross-section. On the basis of
the above symbolizations one can write

q"
: Ķ ¸Nd¸

»

(4)

where » is the volume of the considered crystal. As-
suming that volume » is cut to polyhedra, the sides

and the edges of which constitute the loops and the
nodes of the network, respectively [30, 31], then the
volume can be estimated as follows

»"M
'
" P Ķ

¸2Nd¸ (5)

where M
'
is a geometric term. Equations 4 and 5 lead

to

q"
"

M
'
"(¸2)

(6)

If r
,
is the standard deviation of the distribution, then

(¸2)"M
,
"2 (7)

where

M
,
"1#A

r
,

"B
2

From the above equation, it results that the coeffi-
cient, M

,
, may be practically considered independent

of the structure of the dislocations network. Equations
6 and 7 lead to

""(M
'
M

,
q )~1@2 (8)

Equations 3 and 8 lead to

r
*
"

(abG)2

2

q5
r5
*

(9)

where a"a@ (M
'
M

,
)1@2

Hereafter the mean internal back stress, r
*
, will be

referred to as, simply, internal stress, r
*
. The above

relation results in the independence of the coefficient
a of the network’s structure. The dot means a time
derivative.

From the basic Orowan’s relation the dependence
of the creep rate on the density of the moving disloca-
tions, q

.
, can be derived [32, 33]

e5 #"M
T
q
.

bv

where v is the mean dislocation’s velocity and M
T

is Taylor’s numerical coefficient. The very important
fact that this relation is also valid for the initial creep
[10, 11] should be emphasized. From Section 2.1, the
high internal stresses are seen to correspond to a small
ratio of moving dislocations, while a very high ratio of
moving dislocations corresponds to low internal stres-
ses. Therefore, q

.
is a function of r

*
and, of course, of

the applied stress because of its relation with the
hardening. As a result it can be written that q

.
"

q
.
(r, r

*
). According again to the analysis of Section

2.1, the mean dislocations velocity is a function of the
effective stress, r

%
, and, of course, of the temperature

because of its relation to the dislocations climb which
is thermally controlled. Therefore, v"(r

%
, ¹ ). Conse-

quently, Orowan’s equation can be written

e5 #"M
T

bq
.
(r, r

*
) v (r

%
, ¹ ) (10)

The following relation has been suggested for the
function q

.
[11, 18, 19]
q
.
"q

0
(r )rn

1
*

(11)
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For the function v, the following relation has been
suggested [9, 11, 18]

v"v
0
(¹ )rn

2
%

(12)

where q
0
, v

0
, n

1
and n

2
are constants.

Ahlquist and Nix [11], gave the following approxi-
mations for the exponents: n

1
"!1, n

2
"#1. There-

fore Equations 10 results in the following relation

e5 #"M
T

bq
0
v
0

r
%

r
*

(13)

If we insert Equation 9 into Equation 13 then

r
%
"

b (aG)2

2M
T
q
0
v
0

q5
r5
*

e5 # (14)

From Section 2.1 the following fundamental rela-
tion can be derived

r"r
*
#r

%
(15)

therefore Equations 9 and 14 result in

r"

(abG)2

2

q5
r5

*

#

b(aG)2

2M
T
q
0
v
0

q5
r5

*

e5 # (16)

The change in the dislocation density, as already men-
tioned, is considered to consist of two terms of harden-
ing and recovery

dq"(dq)
1
!(dq)

2
(17)

The first term essentially describes a change in the
dislocations — obstacles density that is due to the fact
that a specific ratio of the moving dislocations density,
q
.
, was immobilized in the crystal after it started to

move over a distance dx. This term can be written as
follows [34]

dq
1
"q

.

dx

"
(18)

The second contribution to the change of the disloca-
tion density is due to a certain recovery or rearrange-
ment procedure which takes place among dislocations
previously started.

The number of possible recovery locations on an
elementary surface, ds, of the sliding plane is qds.
When a mean length, "

3
, of the dislocation is counter-

balanced or is, in another way, rendered inactive, the
total change in the dislocation length in the volume,
», at every possible recovery location, is

»(dq)
2
""

3
qds (19)

Given a crystal of thickness, h, that contains a disloca-
tion, then the shear strain, dc, can be written as

dc"
b
h

"q
.

bdx

"

bds

»

(20)

Combining Equations 17—20 and taking into account
Equation 8 we obtain

dq M M "

dc

" ' ,
b

q1@2! 3
b

q (21)
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As far as the axial strain, e#, is concerned, the above
relation can be written as

dq

de#
"k

1
q1@2!k

2
q (22)

where the abbreviations k
1
"a@ (M

'
M

,
)1@2/b, k

2
"

a@"
3
/b, are used. a@ is a numerical coefficient.

With the transformation R"q1@2, Equation 22
leads to

dR

de#
"

k
1
2 A1!

Rk
2

k
1
B (23)

Function R(e#) presents a stationary point at the value
R"R

S
where dR/de#"0. Also for e#"e#

0
"0, it can

be considered that R"R
0
. Therefore:

q"R2
S
![2R

S
(R

S
!R

0
) e!(k

2
/2) e#

!(R
S
!R

0
)2 e!(k

2
/2) e#] (24)

Considering that it can be written that:

x
1
ey

1!x
2
ey

2:(x
1
!x

2
)e(x

1
y
1
!x

2
y
2
)/(x

1
!x

2
)

Equation 24 is transformed to

q"R2
S
!(R2

S
!R2

0
) e![R

0
k
2
/(R

S
#R

0
)] e# (25)

Hereafter, e# in the exponent is represented as u(t ).
For the unknown function u (t), the following data

are known from experiments:

(i) u(t) is continuous, properly increasing and posi-
tive,

(ii) its derivative u
0
(t) is continuous and presents

a minimum u
0
(u

0
'0), and that

(iii) u(0)"0

Therefore

q5 "R
0
(R

S
!R

0
)k

2
u
0
(t) e![R

0
k
2
/(R

S
#R

0
)]u (t) (26)

Taking into account Equation 26, the differential
Equation 16 takes the form

r"A
u

0
(t)

r5
*

e!cu (t)
#B

u
0
(t)

r5
*

e!cu(t)e5 # (27)

where the abbreviations

A"

(abG)2

2
R

0
(R

S
!R

0
)k

2
(27a)

B"

b(aG)2

2M
T
q
0
v
0

R
0
(R

S
!R

0
)k

2
(27b)

c"
R

0
k
2

R
S
#R

0

(27c)

are used. The above relations imply that: A, B, c'0.
We consider the differential equation

e5 #"
Au

0
(t) e!cu(t)

!Ce!bte#
De!bt

!Bu
0
(t)e!cu (t) "f (t, e#) (28)

where C, D and b are non-negative coefficients. The
differential Equation 28, together with the condition
e#(0)"0, constitutes an initial-value problem. f (t, e#)
is a function of two variables and is defined in the

domain * such that t*0, e#*0. For the function



f (t, e# ) for every e#
1

e#
2
, the following is valid

D f (t, e#
1
)!f (t, e#

2
)D"

C De#
1
!e#

2
D

DD!Bu
0
(t) ebt!cu (t) D

(29)

where C'0. There is b with b'0 such that bt'
cu(t) for every t. Therefore

Bu
0
(t) ebt!cu (t)

!D'Bu
0
!D

For 0(D(Bu
0

(this inequality is compatible with
inequality D(Bu

0
(0) that results from Equation 28.

The case D"0 is rejected because it results in
e#(0)(0,

1

DBu
0
(t) ebt!cu(t)

!DD
(

1

Bu
0
!D

As a result, Equation 29 takes the form

D f (t, e#
1
)!f (t, e#

2
)D(k De#

1
!e#

2
D (30)

where

k"
C

Bu
0
!D

'0

Therefore, with the constraints already mentioned for
the coefficients C, D and b, the function f (t, e#) is
a Lipsitz function [35, 36] with k as a constant. More-
over, it is bounded. In fact, for function f (t, e#) the
following is valid

D f (t, e# )D(
[C/u

0
(t)] e!bt#cu (t) e##A

D[D/u
0
(t)] e!bt#cu (t)

!BD
(31)

However

K
D

u
0
(t)

e!bt#cu(t)
!B K

~1
(K

D

u
0

!B K
~1

Also with the stronger constraint bt'(c#1)u(t), for
every t, it is derived that

C

u
0
(t)

e!bt#cu(t)e#(
C

u
0

As a result, Inequality 31 takes the form

D f (t, e#)D(M
&

(32)

where

M
&
"

C#Au
0

Bu
0
!D

'0

That is, M
&
is a bound of f (t, ec) in the domain *.

The conditions of Emile Picard’s theory are fulfilled
[35, 36], and therefore the initial-value problem
(Equation 28) has one and only one solution for t*0.
That is, it has been shown that there are C, D and b
such as that Equation 28 is valid for every t*0.
Equations 27 and 28 lead to

r"C
e!bt

r5
*

e##D
e!bt

r5
*

e5 # (33)

3. Tertiary creep
3.1. Metallic materials creep failure

mechanisms
The creep acceleration at the third stage is due to the

creation and joining of cavities at the boundaries of
grains, that is, the fracture in creep is, generally, inter-
crystalline. The cavities may be created at the begin-
ning of creep, even in the first stage. Initially, their
effect on the strain rate is negligible but, as their
number and size increase, this effect becomes defini-
tive. The accelerating rate of creep can also be caused
by the collapse of the materials microstructure. Many
metallic materials contain second-phase particles that
act as obstacles in the movement of dislocations and
improve the strength to creep. Under a straining over
a long period of time the possible growth of the larger
of these particles and the disappearance of the smaller,
leads to increasing rates of creep. But Dyson and
McLean showed [37] that, even in nickel superalloys
(with a large number of particles), the tertiary creep
cannot be explained by the development of particles.
The main part of the accelerating rate of creep should
be attributed to the cavities of the grain boundary.
Another possible cause (not definite) for the accelerat-
ing rates of the third stage of creep is the corrosion on
or below the surface, as, for example, the internal
oxidation (mainly at the boundary grain) and the
following creation of a crack.

Under relatively medium stresses and high temper-
atures the metallic materials are broken with a rela-
tively low ductility. The decrease is due to the inter-
crystalline development of cavities. Isolated cavities
have been tracked at the second stage of creep and, in
some cases, at the first stage. At the later stage, the
voids start to become unified at the sides of the grain
boundaries, forming small cracks (microcracks). The
unification of the microcracks leads to the character-
istic fibrous—porous surface of the intercrystalline frac-
ture. The general cause of the transition from the
intracrystalline failure (under low temperatures) to the
intercrystalline failure is that the atomic voids are
rendered agile under high temperatures. The atomic
voids that are dispersed at the boundaries of grains
can be concentrated to form cavity nuclei. Moreover,
the grain boundaries are active sources of voids so
that they supply the creation of cavities. In the alloys
that usually contain second-phase particles at the
limits of grains, the cavities are, usually, created at the
place of the particles. Numerous studies have shown
that in the low alloyed steels, the austenitic steels as
well as the nickel superalloys, the cavities are related
to carbides, as well as to sulfides, silicates and oxides
existing in the main material.

The development of creep damage can be expressed
in terms of two mechanisms [38—40]. The one mecha-
nism is the creation of cavities and provides a measure
for the rate at which the number of voids increases and
the other mechanism has to do with the development
of cavities and provides a measure of the magnifica-
tion of cavities with time. The rate of creation of voids
is represented as M0 and is measured with the number
of cavities created per unit of time on the unit area of
the grain’s boundary. Let M0 (n) be the rate of creation
of cavities in a time n. Therefore, in the time interval
dn, the number of new cavities created is M0 (n)dn. In
the later time, t, these cavities will be magnified and
the assumed rate of development of the cross-sectional

area of the cavities created in time n will be ¼0 (t, n).
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The total area, S, of the voids in time t
&
is therefore

S

S
0

"P
t
&

0

M0 (n)dn P
t
&

n

¼0 (t, n) d

where S
0
is the total cross-section. The above formula-

tion is general but shows that, in order to define
a measure of damage, the effect of both functions M
and ¼ should necessarily be known.

Rabotnov and Kachanov [41], simplifying the ana-
lysis at this point, considered the ratio x"S/S

0
as

a phenomenological (state) variable, and used the con-
dition x"1 as the failure condition. They assumed
that the following relation is valid

dx

dt
"BK

rk
L

(1!x)kL
(34)

where kL is a constant. Moreover, similar relations have
been proposed for the development of damage [42,
43].

It is important to emphasize that, using the effect of
damage on the tertiary creep, it is possible to measure
the quantity x. In fact, in other studies [44, 45], a
method of measuring x is suggested. Moreover, Equa-
tion 34 is in perfect accordance with the experimental
data. Therefore, the variable x concept is a fully de-
fined macroscopic structure parameter.

3.2. The effect of damage on the rate of creep
An obvious mechanism by which the intercrystalline
cavities can increase the creep strain rate is the de-
crease in the effective cross-section that bears the load
and therefore the increase in the essential stress at the
effective cross-section [41, 46, 47]. Another mecha-
nism, which sometimes may be important, is the in-
crease in the volume of the specimen because of the
cavities, which also has a specific contribution to the
strain. Moreover, the loss in the effective cross-section
is not large enough to explain fully the increasing
strain rate. Nevertheless, it has been proved that the
tertiary creep is related to the creation of cavities. The
following idea has been proposed as a satisfactory
explanation. The recovery is quicker in the presence of
cavities because these may act as a particularly ca-
pable sink of atomic voids and therefore, they may
promote the dislocation climb procedure [18, 48, 49].
Using the concept of damage x, Equation 33 can be
modified so that it takes into account both the
decrease in the cross-section and the acceleration of
the recovery procedure. This can be realized by the
replacement of r by r/(1!x) and of r

*
by (1!x)rr

*
,

where r is a numerical coefficient. The result is

r
1!x

"C
e!bt

(1!x)1~rr5
*

e##D
e!bt

(1!x)1~rr5
*

e5 #

(35)

4. The basic constitutive equation
Equation 35 is transformed to

e!bt (1!x)r e!bt (1!x)r

r"C

r5
*

e##D
r5
*

e5 # (36)
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Equation 36 constitues a generalization of Equation
33 applied also to the third stage in so far as of the first
and second stage, the damage although it exists, it can
be neglected (xP 0) as already mentioned. The litera-
ture supports the validity of Equation 36 in many
different ways. For example, in order to take into
account the material’s damage [50, 51], the following
generalized equation was proposed for the case of
creep

r"(
0
( . )Ze##(

1
( . ) f e5 # (37)

Z and f are functions capable of describing the creep
behaviour without damage, while (

0
( . ) and (

1
( . ) are

generalized damage functions that are properly se-
lected. The above relation is evidently compatible with
Equation 36 but is of phenomenological origin and is
arbitrarily formulated. Moreover in a previous study
[52], measurements were formulated and performed
at different times for the number, size and total volume
of cavities. In addition, in this microscopic point of
view, the resultant relations are compatible with
Equation 36.

The basic conclusion derived both from Equation
36 and from analysis of Section 1 is that, in order to
describe the entire creep curve, two structure para-
meters are required, X

1
"r5

*
and X

2
"x that corre-

spond to the dominant procedures of the dislocation
movement and the development of cavities.

The fundamental Equation 36 is also valid for the
metallic materials that are heavily hardened with sec-
ond-phase particles. This important conclusion is de-
rived after taking into account the effect of internal
stress of particles r

1
. In fact, as follows from Section

2.1, for this particular case, Equation 15 takes the form

r"r
1
#r

*
#r

%
(38)

Equation 8, expressing the fact that the mean free
length of dislocations, ", is proportional to q~1@2

should be abandoned when the distance between the
obstacles of the dislocations, which defines the mean
free length, is a geometrically defined quantity [53].
This is the case in the presence of an exceptional
number of particles (separated by a distance smaller
than a critical value) or of very fine-grained materials,
where the mean free length is defined by the distance
between the particles or the size of the grains, respec-
tively. Therefore, the term describing the hardening in
Equation 22 becomes constant and the equation takes
the form

dq
de#

"k
3
!k

2
q (39)

where the constant k
3

is a function of the mean dis-
tance of obstacles. With the conditions e#"e#

0
"0

and q"q
0
, it is derived that

q"
k
3

k
2

!A
k
3

k
2

!q
0B e!k

2
e# (40)

Equation 40 has exactly the same form as Equation
25. If Equation 38 takes the form
r!r
1
"r

*
#r

%



then, exactly the same analysis that was included
between Equations 26—32 can be repeated. Then, the
following relations result

r!r
1
"CK

e!bª t

r5
*

e##DK
e!bª t

r5
*

e5 # (41)

But for the internal stress of particles, r
1
, it was found

that this is proportional to the applied stress [54]

r
1
"K

1
r (42)

where K
1
is a constant and 0(K

1
(1. Equations 41

and 42 result in

r"

CK
1!K

1

e!bª t

r5
*

e##
D

1!K
1

e!bª t

r5
*

e5 # (43)

For the abbreviations C"CK /(1!K
1
), D"

DK /(1!K
1
), bª "b, the above equation coincides with

Equation 33. This conclusion allows for no particular
distinction being made for this type of material in the
following analysis, given the fact that the damage
procedure, as already shown in Section 3.1, is common
to all metallic materials.

Using relations that were previously explained, ex-
pressions that approximate representations r5

*
and

x can be provided, so Equations 3 and 8 lead to

r
*
"aGbq1@2 (44)

From the above equation and Equation 22 it is de-
rived that

dr
*

de#
"

aGbk
1

2 A1!
k
2
r
*

aGbk
1
B (45)

It is derived from Equation 45 that r
*
(e#) takes a value

r
*4

of steady state where dr
*
/de# is zero. Also for

e#"e#
0
"0, it is considered that r

*
"r

*0
. As a result

r
*
"r

*4
!(r

*4
!r

*0
) e!k
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With the approximation e#!e#
0
:e5 #

0
t the relation is

transformed to

r5
*
"l (r

*4
!r

*0
) e!lt (47)

where

l"
k
2
2

e5 #
0

Equation 34 has been considered for the develop-
ment of damage x and leads to

t
&
"

1

(1#kK ) BK rkª
(48)

where t
&

is the failure time. Therefore, Equation 34
takes the form

dx
dt

"

1

(kK #1) t
&
(1!x)kª

(49)

for t"0, x"0 as a result

(1!x)r" 1!
t r/(kK #1)

(50)
A t
&
B

For times not very close to the failure, it can be written
that

(1!x)r"e!dt (50a)

where

d"
r

t
&
(kK #1)

Equations 36, 47 and 50a lead to

r"Ke!at e##ge!at e5 # (51)

where

K"

C

l (r
*4
!r

*0
)

(51a)

g"

D

l (r
*4
!r

*0
)

(51b)

a"b!l#d (51c)

The parameters K, g and a, as derived, are functions
of physical quantities and, in the future, they will act as
experimentally defined fitting parameters. Also, from
the above analysis, K"K (r, ¹ ), g"g(r, ¹ ) and
a"a(r, ¹ ).

After replacing

K*(t)"Ke!at (52a)

g*(t)"ge!at (52b)

Equation 51 takes the final form

r"K*(t)e##g*(t)e5 # (53)

K* and g* are model characteristic parameters.
It has been shown from the analysis that the effect of

damage has been incorporated in the fitting parameter
a. Therefore, the derived conclusion is that there is
a one to one correspondence between K*(t) and g*(t)
and the derivative of the internal stress r5

*
(the only

structure parameter left). This basic conclusion was
used in the analysis of the response of the time-vari-
able straining [2, 4]. The function of the developed
physicophenomenological model is, therefore, com-
plete with the structure parameter r5

*
.

5. The creep function
5.1. Previous relations
Because of the long duration of the creep experiments,
various relations have been proposed concerning the
evolution of strain with time as well as its dependence
on the straining conditions. In previous decades, the
large volume of theoretical scientific work as well as
most of the adopted designing methods were based on
the Norton—Bailey relation

e5 "rnL exp A!
Qª

R¹B (54)

where nL , Qª are material constants, R is the global
constant and ¹ the absolute temperature. Neverthe-
less, the use of this relation in the design means that
(i) the creep curve is a straight line, (ii) the initial and

tertiary creep are neglected, and (iii) the rate of
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secondary creep, e5
.

(and the creep life, t
&
) is, essentially

defined as the exclusive designing parameter. In many
cases, this led to the fact that only the secondary creep
rate was measured while the rest of creep curve was
neglected.

Many problems have been encountered concerning
the unsatisfactory nature of the explanations provided
for the different values of nL and Qª at various stress and
temperature ranges. Moreover, the use of Equation 54
in the best case, leads to only one approximate repre-
sentation of the material’s behaviour for designing
elements that operate under high temperatures. From
the complex form of the creep curves, it is obvious that
the procedures for determining e5

.
(and t

&
), alone,

neglect a considerable amount of information on the
material behaviour. The change in the values of nL and
Qª has been explained, up to now, through changes in
the creep mechanisms. Nevertheless, microscopic
studies did not reveal important changes in the mech-
anisms such as to justify these irregular changes and
the absence of continuous functions nL (r, ¹ ), Qª (r, ¹ )
[55, 56]. The studies show that the secondary creep
rate (and the failure time), even though they are simple
to measure, should not be considered as quantities
that fully characterize the metallic material creep be-
haviour. At the same time, a detailed study of the creep
curves showed that it is completely artificial to define
a dominant second stage and to refer to the minimum
creep rate as the only quantity to which one can
reasonably refer.

Besides the above reasons, there are others that
make the description of creep by the secondary creep
rate inadequate. Many alloys in modern technology
have a creep curve strongly dominated by the tertiary
creep because of the impediment of dislocations move-
ment in various ways. Therefore, descriptions and
constitutive relations that neglect the tertiary creep
lead to a complete failure. Moreover, today math-
ematical difficulties that existed in the past for the
manipulation of the non-linear relations and which, in
many times were prohibitive of the design, no longer
exist. It is derived from the above analysis that there is
a necessity of relations describing the entire creep
curve and producing all the useful parameters that will
constitute the basis for the development of a complete
constitutive relation describing the metallic material
creep. Despite the intensive use of Equation 54, early
attempts have been made to achieve a complete ana-
lytical mathematical description of the metallic mater-
ials creep curve. These attempts are also related to the
concerns already expressed. A certain number of these
relations are presented below. A disadvantage of these
relations is their fractional character; that is, the fact
that they refer to one or two stages of creep and not to
the entire curve. For the first and the second stage. the
following relations were suggested.
Andrade’s relation [57, 58]

e"exp [ln(1#e
0
)#ln(1#Z

1
t)1@3#Z

2
t]!1

(55)

Bhattacharya’s relation [59]
e"e
0
#eZ

1
tbÇ!1 (56)
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Cottrel and Aytekin’s relation [60]

e"e
0
#Z

1
tbÇ#Z

2
t (57)

Chevenard’s relation [61, 62]

e"Z
1
ln (1#b

1
t)#Z

2
t (58)

Johnson and Frost’s relation [63]

e"e
0
#Z

1
tb1#Z

2
tb

2 (59)

Mott and Nabarro’s relation [57, 62]

e"e
0
[ln(1#Z

1
t)]2@3 (60)

McVetty and Garofalo’s relation [57, 61, 64, 65]

e"e
0
#Z

1
(1!e!b

1
t )#Z

2
t (61)

McHenry’s relation [57]

e"Z
1
(1!e!b

1
t)#Z

2
(1!e!b

2
t) (62)

Odding’s relation [57, 66]

e"
Z

1
t

1#Z
2
t
#Z

3
t (63)

Phillips’s relation [57, 60]

e"e
0
#Z

1
lnt (64)

Schaar’s relation [67, 68]

e"
Z

1
tb

1

1!Z
2
Z

1
tb1

(65)

Tapsell and Prosser’s relation [61, 62]

e"Z
1
ln (1#Z

2
t) (66)

and Wyatt’s relation [57, 60, 69]

e"Z
1
ln t#Z

2
tb1 (67)

The main relations for the metallic material tertiary
creep are as follows.
Davies and Dutton’s relation [70]

e"e
t
#Z

1
t4@5 (68)

and Davies and Williams’ relation [71]

e"e
t
#Z

1
eb

1
t (69)

where e is the total strain. The effects of stresses and
temperatures are considered to be incorporated in
constants Z

*
and b

*
. But the fact that these relations do

not cover the entire creep curve results in the consti-
tutive dependencies on the stress and the temperature
not being referred to in the literature, except in very
few instances.

Historically, the first relation that was formulated
and that describes the entire creep curve was that of
Graham and Walles [72]:

e"e
0
#Z

1
t~1@3#Z

2
t#Z

3
t3 (70)

and was, mainly, empirically derived. In the modern
attempts of describing the entire creep curve, the h-

projection method [73—80] is the prevailing one and



uses the following relation for creep strain as a basic
tool

e#"f (h, t)

"h
1
(1!e!h

2
t )#h

3
(eh

4
t
!1) (71)

The effect of r and ¹ is incorporated in the fitting
parameters h

i
. For the dependencies h

*
"h

*
(r, ¹ )

simple relations were found, a fact that provides the
possibility of performing not only a good fitting to the
experimental data but also a good prediction. The
method is mainly of empirical origin and its develop-
ment is closely associated with metallic materials of
advanced technology. Some interpretations for Equa-
tion 71 were presented a posteriori on the basis of
physical mechanisms [77, 78].

5.2. The new function
The model’s differential equation (Equation 53) leads
to the following expression for the creep strain e# :

e#"exp A!P
K*

g*
dtB

]CP
K*

g*
exp AP

K*

g*
dtB dt#CeD (72)

where Ce is the integration constant. Replacing Equa-
tions 52a and 52b for the parameters K* and g*,
respectively, it is derived, for the case of creep under
constant loading that

e#"GCe#A
r

gB
1

a#(K/g)
exp CAa#

K

gB tDH
]exp A!

C

A
tB (73)

The initial conditions t"0, e#
0
"0 results in

Ce"!

r
ag#K

and, therefore, the creep strain is now expressed as

e#"
r eat

ag#K
[1!e!(a#K/g) t] (74)

The total strain e is the sum of the instantaneous
elastic strain e

*
"r/E (E is the Young’s modulus) and

the creep strain e#

e"
r

E
#

r eat

ag#K
[1!e!(a#K/g) t] (75)

This leads to the following expression for the strain
rate

e5 "
rK

(ag#K)g
e!(K/g)t

#

ra

ag#K
eat (76)

Equation 75 takes the following form

e"
r
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#
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ag#K
(1!e!(K/g)t )#

r

ag#K
(eat

!1)
(77)
Equations 77 and 71 lead to the fact that the model’s
creep function (Equation 77) being identical to that of
the h-projection. But there are only three fitting para-
meters in the model’s function (that is K, g and a)
while there are four in the h-projection equation (that
is h

1
, h

2
, h

3
and h

4
) or even five [80].

Moreover, for relatively short time periods, it can be
written that eat

:1#at. The Equation 77 takes the
form

e"
r
E
#

r
ag#K

(1!e!(K/g)t )#
Ka

ag#K
t (78)

which is identical to McVetty and Garofalo’s relation
(Equation 61) for the initial and secondary creep,
while for long time periods e!(K/g)t

:0 is valid and
Equation 77 takes the form

e"
r
E
#

r
ag#K

eat (79)

which is William and Davies’ relation (Equation 69)
for the main part of tertiary creep.

There is a considerable volume of literature that
supports the use of McVetty and Garofalo’s equation
(Equations 61 or 78) for the initial and secondary
creep of a large group of metallic materials. Garofalo
[81] published creep data for stainless steel and
showed that they are in accordance with Equation 78.
Eriksen [82] analysed data for creep of molybdenum
with the result that the relation provided reasonable
values. The specimens were subjected to thermal re-
crystallization treatment at 2000 °C and were tested
for creep at 1720 °C in vacuum. Moreover, McVetty
and Garofalo’s equation was verified for the following
materials: for aluminium by Sherby et al. [83], for
a-iron by McLean and Hale [84], for copper by Fel-
tram and Meakin [85], for nickel monocrystals by
Parker [86], Raymond and Dorn [87], for nobelium
by Brinson and Argent [88] and for platinum by
Carrekar [89] with very good results. Moreover,
Evans and Wilshire [90] carried out a test for Ca—Al
alloys, while Sidey and Wilshire [91] studied Cu—Ni
alloys and verified the satisfactory fitting of the rela-
tion to the experimental data. Finally, Amin et al.
[92], suggested McVetty and Garofalo’s equation to
be a general law for the metallic initial and secondary
creep. Moreover, Davies and William’s relation
(Equation 69 or 79) has also been experimentally veri-
fied for the tertiary creep [71].

6. Comparisons with experimental data
In order to test the model and, mainly, in order to
determine the dependencies of the fitting parameters
K, g, a and to derive, thus, a prediction system, the
creep function is compared to the large group of
metallic materials. In order to ensure the indisputable
validity of the produced constitutive relations, on the
one hand, experiments are carried out in the labora-
tory and, on the other hand, experiments found in the
literature from very different sources are used. The
experimental data concern a wide range of practical

materials: the highly alloyed steel X6 CrNiMo 17 13 at
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700 °C [93], the 800 H alloy at 850° [80], the low
alloyed steels 10 CrMo 9 10 [93] and 2 1/4 Cr 1Mo
[93] at 600 and 550 °C, respectively, aluminium at
210 °C [90] and the nickel-alloy IN-100 at 1000 °C
[95, 96]. The chemical compounds, thermal treatment,
as well as the Young’s modulus of metallic materials,
are analytically presented in Tables I and II. The
laboratory-derived experimental data concern the
steels X8 CrNiMoNb 16 16, X22 CrMoV 12 1 at 700
and 650 °C, respectively, and oxygen-free copper at
405 °C [1!6]. As shown in Fig. 1, there is a perfect
agreement between the creep function (Equation 75)
and the experimental results in the entire range of the
above materials. The same agreement is also presented
for the materials tested in the laboratory [1—6]. The
dependencies of the fitting parameters on the stress are
shown in Figs 2—4. Especially in Fig. 2, the depen-
dencies of the fitting parameter, K, on stress, r, are
presented. The dependencies of the fitting parameter,
g, on the stress, r, are presented in Fig. 3, while the
dependencies of the fitting parameter, a, on the stress,

r, are shown in Fig. 4.

2520
As it is indisputably derived from all figures, the
parameters can be approximated by the following very
simple analytical relations for all the materials

K"k exp (!lr) (80)

g"m exp (!nr) (81)

a"p exp (qr) (82)

where the values of k, l, m, n, p, q for the various
materials and the temperatures are presented in
Table III.

The simple Equations 80—82 are in direct contradic-
tion with the anomalous dependence nL (r) in Equation
54 which, essentially, cannot be analytically for-
mulated. The dependence of K* and g* on time for the
various stresses is indicated in Figs 5 and 6, respective-
ly. For relatively small loading stresses, where the
structure of the material changes slowly with time, the
values of K* and g* also change slowly, while for high
stresses the rapid change in the structure of the mater-

ial leads to a remarkable change in K* and g* with
TABLE II Thermal treatment and Young’s modulus of the materials

Material Thermal treatment Young’s modulus

X 6 CrNiMo 17 13 Annealing: 1050 °C In 650 °C range:
(DIN 17006) Permanence: 30 min &150 000 MPa

Cooling: air

800H Annealing: 950 °C In 800 °C range:
(ASTM B163) Permanence: 30 min &140 000 MPa

Cooling: water

10 CrMo 9 10 Annealing: 1150 °C In 650 °C range:
(DIN 17006) for grain size ASTM 21

2
&140 000 MPa

21
4

Cr1Mo Annealing for normalization: In 650 °C range:
(BS 1501-622) 940 °C &140 000 MPa

Heating: 695 °C (BS3604-1972)

Al Annealing: 420 °C In 200 °C range:
(BS 1472) Under a control slow cooling &60 000 MPa

IN-100 In 900 °C range:
(BS) &160 000 MPa

TABLE I Chemical compositions of the materials. The concentrations of the alloyed elements are given in wt %

Material C Si Mn P S Cr Mo V Mg Ti Cu Zn Co Al Ni Fe

X 6 CrNiMo 0.065 0.423 1.62 0.018 0.023 17.06 2.26 0.02 — — — — — — 13.32 Bal.
17 17
(DIN 17006)

800H 0.05— 1.0 — — — 19— — — 1.5 0.05— — — — 0.15— 30— Bal.
(ASTM 0.10 23 0.10 0.60 35
B163)

10 CrMo 0.105 0.24 0.93 0.012 0.014 2.29 1.005 — — — 0.09 — — — 0.16 Bal.
9 10 (DIN
17006)

21
4

Cr1Mo 0.13— — 0.40— — — 2— 0.90— — — — — — — — 0.30 Bal.
(BS 1501-622) 0.18 0.80 2.5 1.20

Al — 0.5— 0.5 — — — — — 0.6— 0.2 1.8— 0.2 — Bal. 0.6— 0.6—
(BS 1472) 1.3 1.4 2.8 1.4 1.2

IN-100 0.18 0.2 0.2 — — 9.5— 2.75— — — 5.0 0.2 — 15.0 5.5 Bal. 0.5
(BS) 10.5 3.50



Figure 1 Fitting of the creep strain function (Equation 75) to the experimental data for different metallic materials. (a) X6 CrNiMo 17 13,
¹"973K. (s) 62 MPa, (h) 78 MPa, (n) 98 MPa, (e) 123 MPa, (£) 137 MPa. (——) Fitting; [93]. (b) 800H. ¹"1123K. (s) 36 MPa, (h) 40
MPa, (n) 43 MPa. (——) Fitting; [80]. (c) 10 CrMo .9 10.¹"873K. (s) 62 MPa, (h) 78 MPa, (n) 98 MPa, (e) 123 MPa, (£) 137 MPa.
(——) Fitting; [93]. (d) 21

4
Cr1Mo. ¹"823K. (s) 155 MPa, (h) 180 MPa, (n) 190 MPa, (e) 200 MPa, (£) 230 MPa. (——) Fitting; [80]. (e)

Al. ¹"483K. (s) 34.48 MPa, (h) 51.71 MPa, (n) 55.16 MPa, (e) 62.06 MPa, (£) 68.95 MPa. (——) Fitting; [94]. (f ) IN 100. ¹"1273K. (s)

137 MPa, (h) 171 MPa, (n) 205.5 MPa. (——) Fitting; [95, 96].
time. This important fact clearly confirms the correct-
ness of the association of parameters K* and g* with
the structure of the material.

Generally the coefficients k, l, m, n, p, q depend on
the temperature ¹, that is, are temperature para-
meters. In a previous study [5], the effect of temper-

ature is incorporated. Then, Equations 80—82 take the
following simple forms

K (r, ¹ )"k exp (l
2
r!l

1
r¹ ) (83)

g (r, ¹ )"m exp (n
2
r!n

1
r¹ ) (84)
a (r, ¹ )"p
1
exp (q

2
r!q

1
r¹#p

2
¹ ) (85)
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Figure 2 Dependence of the fitting parameter K on the stress for different metallic materials. (a) X6 CrNiMo 17 13, ¹"973K. (b) 800H,

¹"1123K. (c) 10 CrMo 9 10, ¹"873K. (d) 21

4
Cr1Mo, ¹"823K. (e)Al, ¹"483K. (f ) IN 100, ¹"1273K.
The constants l
1
, l

2
, n

1
, n

2
, p

1
, p

2
, q

1
, q

2
, k and m are

independent of r and ¹ while they are only dependent
on the material and the preceding thermal treatment.
That is, there are only ten material constants, a num-
ber smaller than in any other relation proposed up to
now (16 in the h-projection equation).

7. Predictions
The linearity of relations lnK—r, lng—r, and lna—r, as
well as the very small deviation of the points from
their approximated function, as shown in the Figs 2—4,
offers a new, relatively simple, method for the predic-
tion of creep data as well as for the interpolation and

extrapolation of experimental data.

2522
For any desired stress, Equations 75, 80—82 and
Table II can, essentially, be used in order to construct
the predicted creep curve. The method allows for the
dependence of the form of the creep curves on the
stress to be accurately described in terms of the para-
meters. If Equations 80—82 are compared to the non-
rational dependence of n̂ on r, the result is that the
system of the above equations clearly constitutes a ra-
tionalization of the creep curve’s dependence on the
stress. The method offers an appropriate basis for the
interpolation and extrapolation of strain data and is
ideally compatible with the modern designing
methods because the constitutive equation, which
exactly describes the behaviour of the material in the
stress field, can be used in a computer, a possibility

that does not exist with n̂ of Equation 54.



Figure 3 Dependence of the fitting parameter g on the stress for different metallic materials. (a—f ) As in Fig. 3.
Fig. 7 shows the predictions produced by the new
method. As derived from the figure, there is an excel-
lent predictive capability of the proposed creep func-
tion. The same predictive capability exactly results
from the tested materials in the laboratory. In Fig. 8
a comparison is made between the predictions of creep
function (Equation 75) and the predictions of the creep
function of the h-projection method which, as already
mentioned, has the same form but also an additional
fitting parameter. The predictions of the h-projection
method were reproduced from other work [80]. The
statistical errors in the determination of the fitting
parameters operate accumulatively in the creep func-
tion. Therefore, the smaller the number of fitting para-
meters, the smaller are the deviations of the predic-

tions from the experimental data.
8. Conclusion
A physical—phenomenological model for the descrip-
tion of the metallic material creep behaviour has been
presented. The model is very general. On the one
hand, it is referred to all three stages of creep and, on
the other hand, it does not distinguish metallic mater-
ials strongly hardened with second-phase particles
(precipitation, particle dispersions). The model uses
two structure parameters, the derivative of the internal
stress and the damage. These parameters correspond
to the dominant physical procedures of the disloca-
tions movement and of the cavities development. The
basic constitutive equation (as well as the structure
parameters) was not arbitrarily formulated but it was
derived from an extended and attentive mathematical

analysis that reliably represents the dominant physical
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Figure 4 Dependence of the fitting parameter a on the stress for different metallic materials. (a—f ) As in Fig. 3.
TABLE III Values of constants of Equations 80—82

Material Temperature k l m n p q
(°C) (MPa) (MPa~1) (MPa h) (MPa~1) (h~1) (MPa~1)

X 6 CrNiNo 17 13 700 5.35]105 1.67]10~2 8.329]107 5.684]10~2 2.489]10~5 4.93]10~2

800 H 850 1.716]103 3.429]10~2 7.503]108 2.296]10~1 1.14]10~4 4.724]10~2

10 CrMo 9 10 600 4.08]104 8.253]10~3 5.780]106 2.381]10~2 1.67]10~4 3.759]10~2

21
4

Cr1Mo 500 5.916]104 8.003]10~3 1.148]109 4.137]10~2 5.085]10~7 5.089]10~2

Al 210 8.174]104 1.613]10~2 2.278]107 5.389]10~2 3.229]10~6 1.159]10~1
IN-100 1000 9.244]106 2.959]10~2 3.796]109 5.048]10~2 8.907]10~4 2.893]10~2
procedures at every stage of creep. The descriptive/
predictive capability of the produced creep function is
due to the solid physical basis of the development of
the physical—phenomenological model and to its

mathematical processing, which led to minimization
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in the number of fitting parameters to a number
smaller than in any other relation proposed up to now
for the description of the entire metallic materials
creep curve. The constitutive equation has a parti-

cularly simple mathematical form. The new method is



considered to offer a basis for the development of
a unified approach to the description of a creep curve
which will solve, on the one hand, theoretical prob-
except (——) prediction.

lems of the scientists interested in accurate predictions
of creep curves and, on the other hand, practical
problems of the engineers interested in the accuracy of
the constitutive equations in the design concerning

metallic materials under high temperatures.
Figure 7 Predictions of creep strain on the basis of Equations 75, 80—82, and Table III for different metallic materials. For key, see Fig. 1,

Figure 6 Dependence of the model characteristic parameter g* on time and for different stresses, for materials (a) 10 CrMo 9 10 at 873K, and
(b) aluminium at 483K.

Figure 5 Dependence of the model characteristic parameter K* on time and for different stresses, for materials (a) 10 CrMo 9 10 at 873K, and
(b) aluminium at 483K.
2525



Figure 7 Continued
Figure 8 Comparison of (-----) present model prediction to (——)
the predictions of h-projection method for material 21

4
Cr1Mo, at

823 K. (s) 155 MPa, (h) 180 MPa, (n) 190 MPa, (e) 200 MPa,
(£) 230 MPa.
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